Infinite-Dimensional Kalman Filtering Approach to Spatio-Temporal Gaussian Process Regression

نویسندگان

  • Simo Särkkä
  • Jouni Hartikainen
چکیده

We show how spatio-temporal Gaussian process (GP) regression problems (or the equivalent Kriging problems) can be formulated as infinite-dimensional Kalman filtering and Rauch-Tung-Striebel (RTS) smoothing problems, and present a procedure for converting spatio-temporal covariance functions into infinite-dimensional stochastic differential equations (SDEs). The resulting infinitedimensional SDEs belong to the class of stochastic pseudo-differential equations and can be numerically treated using the methods developed for deterministic counterparts of the equations. The scaling of the computational cost in the proposed approach is linear in the number of time steps as opposed to the cubic scaling of the direct GP regression solution. We also show how separable covariance functions lead to a finite-dimensional Kalman filtering and RTS smoothing problem, present analytical and numerical examples, and discuss numerical methods for computing the solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatio-Temporal Learning via Infinite-Dimensional Bayesian Filtering and Smoothing

Gaussian process based machine learning is a powerful Bayesian paradigm for non-parametric non-linear regression and classification. In this paper, we discuss connections of Gaussian process regression with Kalman filtering, and present methods for converting spatio-temporal Gaussian process regression and classification problems into infinite-dimensional state space models. This formulation al...

متن کامل

TO APPEAR IN SPECIAL ISSUE: ADVANCES IN KERNEL-BASED LEARNING FOR SIGNAL PROCESSING IN THE IEEE SIGNAL PROCESSING MAGAZINE 1 Spatio-Temporal Learning via Infinite-Dimensional Bayesian Filtering and Smoothing

Gaussian process based machine learning is a powerful Bayesian paradigm for non-parametric non-linear regression and classification. In this paper, we discuss connections of Gaussian process regression with Kalman filtering, and present methods for converting spatio-temporal Gaussian process regression problems into infinite-dimensional state space models. This formulation allows for use of com...

متن کامل

Efficient Spatio-Temporal Gaussian Regression via Kalman Filtering

In this work we study the non-parametric reconstruction of spatio-temporal dynamical Gaussian processes (GPs) via GP regression from sparse and noisy data. GPs have been mainly applied to spatial regression where they represent one of the most powerful estimation approaches also thanks to their universal representing properties. Their extension to dynamical processes has been instead elusive so...

متن کامل

Explicit Link Between Periodic Covariance Functions and State Space Models

This paper shows how periodic covariance functions in Gaussian process regression can be reformulated as state space models, which can be solved with classical Kalman filtering theory. This reduces the problematic cubic complexity of Gaussian process regression in the number of time steps into linear time complexity. The representation is based on expanding periodic covariance functions into a ...

متن کامل

State Space Methods for Efficient Inference in Student-t Process Regression

The added flexibility of Student-t processes (TPs) over Gaussian processes (GPs) robustifies inference in outlier-contaminated noisy data. The uncertainties are better accounted for than in GP regression, because the predictive covariances explicitly depend on the training observations. For an entangled noise model, the canonical-form TP regression problem can be solved analytically, but the na...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012